Strain-enhanced doping in semiconductors: effects of dopant size and charge state.

نویسندگان

  • Junyi Zhu
  • Feng Liu
  • G B Stringfellow
  • Su-Huai Wei
چکیده

When a semiconductor host is doped by a foreign element, it is inevitable that a volume change will occur in the doped system. This volume change depends on both the size and charge state difference between the dopant and the host element. Unlike the "common expectation" that if the host is deformed to the same size as the dopant, then the formation energy of the dopant would reach a minimum, our first-principles calculations discovered that when an external hydrostatic strain is applied, the change of the impurity formation energy is monotonic: it decreases if the external hydrostatic strain is applied in the same direction as the volume change. This effect also exists when a biaxial strain is applied. A simple strain model is proposed to explain this unusual behavior, and we suggest that strain could be used to significantly improve the doping solubility in semiconductor systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge-based quantum computing using single donors in semiconductors

Solid-state quantum computer architectures with qubits encoded using single atoms are now feasible given recent advances in atomic doping of semiconductors. Here we present a charge qubit consisting of two dopant atoms in a semiconductor crystal, one of which is singly ionised. Surface electrodes control the qubit and a radiofrequency single electron transistor provides fast readout. The calcul...

متن کامل

Calculation of dopant solubilities and phase diagrams of XPbSe (X = Br, Na) limited to defects with localized charge

The control of defects, particularly impurities, to tune the concentrations of electrons and holes is of utmost importance in the use of semiconductor materials. To estimate the amount of dopant that can be added to a semiconductor without precipitating secondary phases, a detailed phase diagram is needed. The ability of ab initio computational methods to predict defect stability can greatly ac...

متن کامل

Extrinsic transient diffusion in silicon

The effect of extrinsic background doping on the transient enhancement of dopant diffusion for an ion-implanted dopant is investigated to gain insight into the role of point defect charge states. The transient effect is found to be greatly increased for extrinsic background doping of the same type as the implanted ion, and reduced for background doping of the opposite type. Analysis of the rela...

متن کامل

Molecular doping in organic semiconductors: fully solution-processed, vacuum-free doping with metalorganic complexes in an orthogonal solvent

Chemical doping in p-conjugated organic semiconductors, which involves a redox reaction between a host p-conjugated material and a dopant, is achieved by either co-evaporation, co-dissolved solution, or exposure to a dopant gas. Here, we demonstrate a new route for molecular doping; a thiophene-based semiconducting polymer film can be doped with dopants dispersed in an orthogonal solvent. An in...

متن کامل

Tuning near-gap electronic structure, interface charge transfer and visible light response of hybrid doped graphene and Ag3PO4 composite: Dopant effects.

The enhanced photocatalytic performance of doped graphene (GR)/semiconductor nanocomposites have recently been widely observed, but an understanding of the underlying mechanisms behind it is still out of reach. As a model system to study the dopant effects, we investigate the electronic structures and optical properties of doped GR/Ag3PO4 nanocomposites using the first-principles calculations, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 105 19  شماره 

صفحات  -

تاریخ انتشار 2010